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LETTER TO THE EDITOR 

Polymer chains and vulcanisation? 

A ConiglioS and M DaoudO 
Boston University, Physics Department, Boston, MA 02215, USA 

Received 24 July 1979 

Abstract. We propose a discrete Hamiltonian to describe the vulcanisation which occurs 
when linear polymer chains are mixed with cross-linking units. Here the vulcanisation of 
the chains can occur via clusters of cross-linking units. The Hamiltonian is a simple 
combination of the n-vector model in the limit when n goes to zero, and the m-states Potts 
model when m goes to unity. We discuss the partition function. The Migdal renor- 
malisation group shows that the chain behaviour is always controlled by the self-avoiding 
walk (SAW) fixed point. The vulcanisation is described by percolation exponents except in 
the vicinity of a higher-order critical point where it crosses over to the SAW exponents. 

1. Introduction 

Both linear polymer solutions and gels have received a renewed attention these last few 
years. Among other salient features, their relation to critical phenomena has been 
widely discussed both phenomenologically (Cotton et a1 1976, Farnoux 1976, de 
Gennes 1975, Stauffer 1976) and microscopically (Domb et al 1965, de Gennes 1972, 
des Cloizeaux 1975, Lubensky and Isaacson 1978, Coniglio et a1 1979). In the present 
Letter we wish to present a discrete Hamiltonian which allows us to study both polymer 
solutions and gelation of polyfunctional units (Flory 1953, Stockmayer 1943) as two 
limits. In between these two limits, it describes a situation where linear polymer chains 
can link together and eventually form an infinite molecule (vulcanisation). The limiting 
situations and the vulcanisation case are shown in figure 1. Let us remark here that by 
vulcanisation we mean not only the usual case where two neighbouring monomers of 
different chains can cross-link (Daoud 1979), but the more general case where two 
molecules which may be far apart from each other can be cross-linked by a cluster made 
of cross-linking units (wavy lines in figure 1). Hence, for instance, whereas the usual 
vulcanisation can occur in the semi-dilute regime only, we consider here the more 
general case where it can also take place in the dilute regime. 

More specifically, we know that the linear polymer solutions may be described by an 
n-vector model in the limit when n goes to zero and in the presence of an applied 
external field (des Cloizeaux 1975): 
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Figure 1. ( a )  Two polymer chains embedded on a square lattice. ( b )  Three clusters made of 
cross-links as in pure bond percolation. ( c )  Two clusters made of chains and cross-links. The 
cross-links (wavy lines) may connect two chains even if they do not have neighbouring 
monomers. 

Alternatively, one can use the discrete version introduced by Hilhorst (1977a, b): 

&, = nJ 1 s1siSvtv, + J, H 1 s,Sv, l ,  (16) 
(1.1) I 

where st = *l and v, = 1,2, . . . , n. 
On the other hand, a useful model for gelation is bond percolation (Flory 1953, de 

Gennes 1975, Stauffer 1976), described by the m-states Potts model (Kasteleyn and 
Fortuin 1969, Wu 1978) in the limit when m goes to unity: 

We propose here a model Hamiltonian which is a simple combination of (1) and (2) 
which describes situations in between: 

On each site, we have now two variables S and U. The sum is restricted to nearest 
neighbours. Let us note: 

(i) When K = 0, (3) describes the usual linear polymer solutions (figure l(a)) .  This 
can be easily checked by using the discrete version l ( b )  instead of l ( a )  in (3). 

(ii) When J = 0, it describes the gelation problem (figure l(b)). 
The purpose of this Letter is to investigate situations where both J and K are 

non-zero and to show that (3) is the most convenient form for the study of vulcanisation. 

2. The partition function 

The partition function for Hamiltonian (3) is 

2 = Tr Tr n exp(JSPS7 +K)S,,,, 
{SI (U} (i,j) 

(I 

but we have 

(4) 

(I (I 
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where e*q has been developed. Only the terms linear in SPS,” have been kept, as they 
are the only ones which will survive in the limit n = O  (Daoud et al 1975). The 
right-hand side of ( 5 )  can be written 

U 

where E is the set of all the bonds in the lattice, C is a subset of E, ( i ,  j) denotes the bond 
connecting the two nearest-neighbour sites i and j, and 

S(C)= l-I SUIDj, R = e K - 1 ,  T = J e K .  
( i , j k  C 

Clearly (6) is equal to 

where CI+DI=C, and by ID11 we mean the number of bonds in the subset D1. 
Now we can also develop the term eHSf to second order, 

(8) eHS: = 1 +HS:  + $ H ’ ( S ~ ) ~ ,  

and from (8), (7) and (4) we obtain 

z = zo E* :A E1A $‘A kNPm N=(c’, 

where 
-K lEl 

2 0  = (1 +$)(h) , 

A, = e-K/(l +?), 
AK = (1 -e-K)/(l +?), 
AJ =.f/(l+.f), 
AH = H/( l  + H2/2)1’2, 

?= J(1+ H2/2), 

(9) 

with N,(C) the number of clusters in the ‘configuration’ C. Note that C = C1 +DI ,  
where C1 is a subset of bonds which can form linear chains only (these bonds will be 
called links), while the bonds in D1 which have no restriction will be called cross-linking 
units. 

A cluster in C is therefore a maximal set of sites connected by bonds of either C1 or 
D1 or both. One can see clearly from (9) that Z can be considered as the partition 
function of a grand ensemble with the following activities: A, = absence of bonds; 
AK = cross-linking units (wavy lines); AJ = links (straight lines); AH = number of chains; 
m = number of clusters. 

Note that these activities have been normalised: 

A, + AJ + A K  = 1. 

The mean number of clusters is 

(N,) = - - 
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In principle, one might think of gelation processes in which m # 1 (Lubensky and 
Isaacson 1978). In this case, the critical exponents will not be the same as the 
percolation exponents. 

3. Renormalisation group 

Now we apply Migdal's renormalisation group (Migdal 1975, Kadanoff 1976) to the 
Hamiltonian (3) using the discrete version of the n-vector model. Let T be the transfer 
matrix and Tii the elements of such a matrix; then the transformation that we use is 
(Nicoll 1979) 

where b is the scaling factor and d is the dimensionality. For b = 2, d = 2 the recursion 
relations in the limit n = 0, m = 1 are 

( l l a )  J' = 4J2/(1 + H 2 / 2 ) ,  

H' = 2 H  + 8HJ/( 1 + H 2 / 2 ) ,  i l l b )  

( I l C i  

The first two equations are independent of K, and therefore coincide with the equations 
that one would have obtained from the pure n-vector model (K  = 0). The eigenvalue 
exponents will be the same as for the SAW. From equations ( l a ,  6)  we find a non-trivial 
fixed point 

K' = in[e4K/(2 eZK - I,]. 

H" = 0 ,  J" =a, 
with eigenvalue exponents JJJ  = 1 and JJH = 2. In this approximation the SAW exponent 

= 1. Other trivial fixed points are at: H = 0, J = 0 ;  H = 0, J = CO; H = cy;, J = 0. 11 = y J  
Equation ( l l c )  is independent of J and H, and therefore is the same as for the pure 
Potts model. The eigenvalue exponent is the same as for the percolation problem. From 
equation ( l l c )  we find the fixed point K*=0.481 and the eigenvalue exponent 
YK = 0.612. In this approximation the percolation exponent up = Yk* = 1.63. This 
separation of the equations does not mean that the two problems are completely 
independent of each other. In fact, from equation (106) we see that the activity for 
cross-links A K  depends on K, J and H. Consequently, the presence of the chains affects 
the percolation problem. However, the activity of the links (of the chains) AJ and the 
number of chains AH do not depend on K .  Consequently the configuration of the chain 
is independent of whether or not there are cross-links, in particular whether or not the 
chain belongs to an infinite cluster, in agreement with experimental results (Duplessix 
1976). 

For H = 0 the interplay of the fixed points gives rise to the phase diagram and flow 
lines given in figure 2. The line A J = A $ = J * / (  1 + J * )  corresponds to the divergence of 
the radius of gyration of the single chain. The critical exponents along the whole line are 
given by the usual SAW exponents. The left of point 0" in the diagram corresponds to 
the absence of an infinite cluster, while the right corresponds to the presence of an 
infinite cluster. The line A K  = (1 - e-K*)/(l + J )  (0 < J < J * )  corresponds to the diver- 
gence of a single cluster, part of which is made of a chain. It starts at A $ = 1 - e-K", and 
ends at a critical point 0" whose coordinates are A $  and A$=(l-e-K*)/( l+J*) .  
Such a point O* is characterised by the divergence of both the cluster and the chain. 

-1  
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F i p e  2. Fixed points and flow lines, for H = 0, dividing the AK, A, plane into three regions: 
I: finite clusters and finite chain; 11: infinite cluster and finite chain; 111: macroscopic chain 
whose density (number of links)/(number of sites) # 0. 

The linear dimension of the cluster tp near the point O* behaves as 

where A = v p / v  is the cross-over exponent, and 

const if x << 1 
if x >> 1. 

The two critical lines divide the phase diagram into three regions: region I corresponds 
to finite clusters and a finite chain; region I1 corresponds to an infinite cluster and a finite 
chain; and region I11 corresponds to a macroscopic chain whose density (number of 
links)/(number of sites) # 0. 

So far we have considered the critical behaviour of a single chain in a cluster or the 
critical behaviour of a single cluster, part of which is made of a chain. 

Now we consider the case H # 0 which corresponds to a finite density of chains. The 
critical threshold for percolation hKS is given from (lob), putting the scaling field 

(14) 

B - B* = 0, by 

A% = (1 - e -K*) / ( l  +I), 
where .f=J/(1 +H2/2). 

Note that the critical surface given by (14) is controlled by the fixed point (K = K*, 
H = 00, J = 0) with percolation exponents. 

In particular, if H is small and J large enough (long chains) equation (14) describes 
vulcanisation of chains. We note that in the usual way of treating vulcanisation (Daoud 
1979), cross-linking occurs only between neighbouring monomers of different chains. 
Here, the chains can also be linked via large clusters of cross-linking units. Of course, 
the two situations coincide in the limit of small hK,. 

A similar behaviour occurs in the site-bond correlated percolation problem (Coni- 
glio and Klein 1979). If the value of hK # A$, the critical line ends at a critical 
end-point. 

In figure (3) we have plotted the critical curve obtained from (15) for fixed value of 
A&. An interesting situation occurs if we choose hK, = A$= (1 -e-K*)/(l +J*) .  In this 
case the line ends at a critical point where the length of the chain diverges. This point 
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Figure 3. Critical curves of vulcanisation for fixed Val?" of cross-link activity A K  in the plane 
H, J. There is a particular value AK = A* = (1 -e-K )/(1 + J * )  such that the critical line of 
vulcanisation ends at a higher-order critical point H = 0, J = J*. This is the critical point for 
the SAW problem, where the exponents cross over from percolation to SAW. 

can be considered as a higher-order critical point for vulcanisation, and critical 
exponents will cross over from percolation exponents to SAW exponents. Although we 
have restricted our discussion to dimensionality d = 2, the previous results are valid also 
for d = 3 since the structure of the RG equations does not change. 

4. Conclusions 

In conclusion, we have exhibited a model Hamiltonian which incorporates the features 
of the m-states Potts model and the n-vector model. In the two limiting cases it 
describes gelation (pure m-states Potts model) and linear polymer solution (pure 
n-vector model), while in the intermediate case it describes vulcanisation of polymer 
chains. The Migdal RG has been used to study the model. 

All the vulcanisation processes are controlled by the percolation exponents. 
However, for a particular choice of the cross-linking activity, there is a critical line of 
vulcanisation which ends at a higher-order critical point. This is the critical point for the 
SAW problem, where the exponents cross over from percolation to SAW. 

The chain problem is always controlled by the SAW fixed point. More explicitly, the 
radius of gyration of a chain which is part of the infinite network has the SAW exponent 
(Duplessix 1976). 
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